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Organic  electrochemical  transistors  (OECTs)  have
attracted  attention  due  to  their  unique  function  of  convert-
ing  ionic  and  biological  signals  into  electronic  signals,  high
transconductance,  low  energy  consumption  (below  1  V),  sta-
ble  operation  in  aqueous  media,  good  biocompatibility[1, 2].
However, most OECTs are usually built on brittle and stiff sub-
strates, and inappropriate to be adhered to or contacted with
delicate human skin, thus impeding their use in wearable elec-
tronics.  It  is  desirable  to  exploit  stretchable  OECTs  to  reduce
the mechanical mismatch with soft tissues.

Stretchable OECTs can be divided into intrinsically stretch-
able OECTs and structurally stretchable OECTs (Fig. 1), depend-
ing on the strategy adopted for establishing its  stretchability.
Intrinsically  stretchable  OECTs require  that  all  OECT’s  compo-
nents  are  inherently  stretchable[3].  Since  the  performance  of
OECTs  has  an  inherent  dimension dependence,  the  deforma-
tion  affects  output  signals  significantly[4].  In  contrast,  struc-
turally  stretchable  OECTs  have  a  low  requirement  for  intrin-
sic stretchability for each device components, and the stretcha-
bility  can  be  obtained  through  device  structure  engineering.
Structurally stretchable OECTs exhibit good stretchability and
high performance along with steady output signal under defor-
mation, demonstrating potential applications in wearable elec-
tronics.  Micro- and  nano-structures  have  been  introduced
into  the  substrate,  electrode,  semiconductor  and  device  for
developing structurally stretchable OECTs (Fig. 2).

A  biomimicking  polydimethylsiloxane  (PDMS)  film  with
2D  wavy  microstructure,  transferred  from  the  bract  of
Bougainvillea  glabra,  was  reported  by  Yan et  al.  in  2019[5].  By
virtue of the 2D wavy microstructure surface, the actual strain
applied to the device is  substantially  alleviated,  resulting in a
device-level  omnidirectional  stretchability.  The  correspond-
ing  OECTs  showed  a  stable  performance  at  a  strain  of  30%
and  a  bending  radius  of  15  mm,  and  were  successfully  used
in  an  attachable  glucose  sensor  with  a  detection  limit  of
1 μM. On a 3D mogul-patterned PDMS substrate, Lee et al. fab-
ricated  stretchable  and  stable  electrolyte-gated  OECTs[6].  In
this  device,  bumps  and  valleys  were  regularly  positioned  to
form  a  hexagonal  close-packed  structure.  Such  a  3D  mogul
microstructure  could  efficiently  absorb  stretching  tension  in
the  lateral  direction  with  minimal  stress  concentration,  thus

gifting  good  stretchability.  The  resultant  OECTs  showed  high
durability under 30% stretching.

Various  stretchable  conductors  have  been  developed
such  as  Ag  nanowire,  carbon  nanotubes,  and  liquid  metals.
Stretchable Au electrode is also desirable for OECTs due to its
good  stability  and  compatibility  with  the  electrolyte.  How-
ever,  dense  Au  thin  films  are  not  stretchable,  while  those
with certain micro-/nano-structure might be. Because the par-
ticular  line  can  function  like  a  spring,  and  unfold  progres-
sively  along  with  out-of-plane  deformation  upon  applying
strain,  the  horseshoe  shape  or  serpentine  structure  is  com-
monly  used  to  enhance  the  stretchability  of  non-stretchable
materials.  Ramuz et  al. made  a  stretchable  OECT  with  horse-
shoe-shape Au/Al electrode, which was patterned by laser cut-
ting and encapsulated in PDMS[7].  The device showed a good
performance under 11% strain, revealing a maximum stretcha-
bility  of  38%  and  a  transconductance  of  0.35  mS.  Someya
et  al. fabricated  an  ultrathin,  stretchable  OECT  on  a  honey-
comb  grid  Au  substrate.  An  excellent  electrical  property  and
mechanical  stretchability  was  achieved  with  only  7%  loss  in
transconductance and source-drain current values under 15%
strain[8].  The stretchability  was enabled by the intrinsic  defor-
mation  of  honeycomb  structures.  A  stretchable  and  blood-
compatible  OECT  array  was  further  integrated  for in  vivo
recording  of  electrocardiogram  (ECG)  signals  of  a  rat  heart.
An  irregular  microcrack  morphology  was  also  proved  to
increase  the  stretchability  of  Au  conductors  by  Chen et  al.[9].
They discovered that initial short microcracks (<2 μm) may eas-
ily propagate into longer microcracks and disrupt the conduct-
ing  pathways,  while  initial  longer  microcracks  (>8 μm)  can
accommodate larger strains and suppress microcrack propaga-
tion.  By  using  highly  stretchable  Au  conductors  with  con-
trolled microcracks,  the device exhibited a  high transconduc-
tance  under  0%  strain  (0.54  mS)  and  140%  strain  (0.14  mS),
and  was  further  utilized  in  stretchable  synaptic  devices.  The
stretchable  OECTs  as  sensors  can  be  implanted  onto  living
organs for continuous monitoring.

Controlling the 2D/3D micro-/nano-structures is an alterna-
tive  strategy  for  improving  the  stretchability,  such  as  nano-
arch,  nano-fiber  and  porous  morphology.  Margaritondo et  al.
developed  an  accurate  3D  writing  technique  to  make  highly
stretchable  organic  nanowire  arrays  with  a  3D  nano-archy
structure,  showing  a  stretchability  of  over  270%  while  main-
taining  electrical  property[10].  It  is  challenging  for  biointer-
face  applications  due  to  the  non-coplanar  device  configura-
tion.  The  chain  entanglement  can  boost  the  stretchability
even  for  stiff  semiconducting  polymers.  Cicoira et  al. made
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highly stretchable conjugated polymer nanofibers via an elec-
trospinning coating method[11].  The fibers could be stretched
to  140%  while  losing  just  16%  of  their  conductivity.  In  addi-
tion, stretchable OECTs with polymer fibers as the active layer
showed transistor behavior up to ~50% strain.  Also,  Lee et  al.
reported  a  stretchable  OECT  for  optoelectronic  sensorimotor
synapse  with  organic  nanowire  as  the  channel  material[12].
The  maximum  drain  current  and  carrier  mobility  was  unaf-
fected  under  100%  strain  for  multiple  cycles.  Moreover,  Fac-
chetti et  al. demonstrated  that  the  stretchability  of  honey-
comb-structured  film  was  greater  than  that  of  dense  film,  as
proven  by  both  simulation  and  laboratory  findings[13].  In  this
context,  a  variety  of  stretchable  OECTs  have  been  reported
based on multilayer porous polymer films[14, 15].

Wavy  structure  is  often  achieved  by  pre-stretching,  and
all the device components are wrinkled and compressed after
releasing  the  pre-stretched  tension.  The  wavy  structure
allows the device to be stretched without significant degrada-
tion of the electrical  performance. Cicoira et  al.  made stretch-
able  OECTs  by  first  pre-stretching  PDMS  substrate,  then  pat-
terning Au source/drain and channel materials through trans-
fer  and  orthogonal  patterning,  and  finally  relaxing  the  pre-
strain[16]. The devices displayed a high stretchability with identi-

cal  transconductance  under  0%−30%  strain.  Facchetti et  al.
developed  a  stretchable  OECT  based  on  honeycomb  poly-
mer  semiconductor  and  biaxially-pre-stretched  platform[13].
An  excellent  stretchability  and  stable  electrical  performance
were  presented  during  a  biaxial  stretching  of  30%−140%.  A
mechanical robustness was demonstrated with a small degra-
dation of the maximum transconductance under 30% strain.

In  short,  we  highlight  the  structurally  stretchable  OECTs
with micro-/nano-structures in the substrates, electrodes, semi-
conductors,  and devices. They can deliver a stable signal dur-
ing  deformation,  and  they  will  find  applications  in  wearable
electronics. 
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Fig. 1. (Color online) Stretchable OECTs.

 

Fig.  2. (Color  online)  (a)  Micro-/nano-structured  substrate.  Reproduced  with  permission[5, 6],  Copyright  2019  and  2021,  Wiley-VCH.  (b)  Micro-/
nano-structured  electrode.  Reproduced  with  permission[8],  Copyright  2018,  Science  (AAAS).  Reproduced  with  permission[9],  Copyright  2019,
Wiley-VCH.  (c)  Micro-/nano-structured  organic  semiconductors.  Reproduced  with  permission[10],  Copyright  2012,  American  Chemical  Society.
Reproduced with permission[12], Copyright 2018, Science (AAAS). (d) Micro-/nano-structured device. Reproduced with permission[16], Copyright
2017, American Chemical Society. Reproduced with permission[13], Copyright 2022, Nature Publishing Group.
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